Diorganotin 2-fluorocinnamates and 4-fluorophenylacetates: synthesis, characterization and in vitro antitumour activity

Marcel Gielen,*† Abdelaziz El Khloufi,† Monique Biesemans,†‡ François Kayser†‡ and Rudolph Willem†‡

Free University of Brussels (VUB), †Faculty of Applied Sciences, Department of General and Organic Chemistry (AOSC), Room 8G512, Pleinlaan 2, B-1050 Brussels, Belgium, and ‡High Resolution NMR Centre

The synthesis and characterization by spectroscopy of several new di-n-butyltin and diethyltin 2-fluorocinnamates and 4-fluorophenylacetates are described. In vitro tests on two human tumour cell lines, MCF-7, a mammary tumour, and WiDr, a colon carcinoma, showed that two of these compounds are more active than cisplatin. Other in vitro tests performed by the NCI, USA on a panel of human tumour cell lines show that one of them, bis[di-n-butyl(2-fluorophenylacetato)tin] oxide, is characterized by statistically significant $D_{\text{GI}_{50}}$, D_{TGI} and $D_{\text{LC}_{50}}$ sensitivities, but non-significant D_{H} and MGD_H selectivities, whereas the analogous 2-fluorocinnamate shows no such significant values.

Keywords: Organotin, antitumour, fluorocinnamate, fluorophenylacetate

INTRODUCTION

Diorganotin mono- or di-fluorobenzoates exhibit interesting *in vitro* antitumour properties against MCF-7, a mammary tumour, and WiDr, a colon carcinoma.^{1,2} As an extension of these studies based on fluorine-containing compounds, we prepared, characterized and tested some diorganotin fluorocinnamates and fluorophenylacetates in order to examine the influence on their activities of introducing a non-aromatic moiety between the fluorophenyl group and the carboxylate function.

RESULTS AND DISCUSSION

The present fluorocinnamates and fluorophenyl acetates were synthesized in the same way as the fluorobenzoates described earlier, viz. by the condensation of the appropriate carboxylic acid R'COOH and diorganotin oxide R₂SnO. Such condensations in molar ratio 2:1 provide monomeric diorganotin dicarboxylates, (R'COO)₂SnR₂, compounds of type A (Eqn [1]):

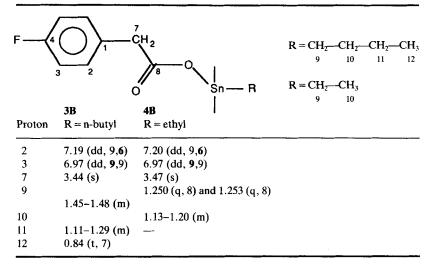
$$2R'COOH + R_2SnO \rightarrow H_2O + R_2Sn(OOCR')_2 [1]$$
Type A

In compound 1A, R'COO = 2-fluorocinnamate, o-FC₆H₄CH=CHCOO, and R = n-Bu.

In molar ratio 1:1, dimeric distannoxanes, $\{[R_2SnOOCR']_2O\}_2$, compounds of type **B**, are obtained (Eqn [2]):

$$4R'COOH + 4R_2SnO \rightarrow 4H_2O$$

+{
$$[R_2SnOOCR']_2O$$
}₂ [2]


In these compounds, the carboxylate and tin substituents were:

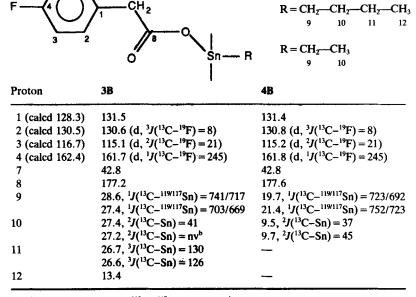
1B: R'COO = 2-fluorocinnamate, o-FC₆H₄CH = CHCOO, R = n-Bu 2B: R'COO = 2-fluorocinnamate, o-FC₆H₄CH = CHCOO, R = Et 3B: R'COO = 4-fluorophenylacetate, p-FC₆H₄CH₂COO, R = n-Bu 4B: R'COO = 4-fluorophenylacetate, p-FC₆H₄CH₂COO, R = Et

^{*} Author to whom correspondence should be addressed.

Table 1a ¹H NMR spectra^a of organotin derivatives of 2-fluorocinnamic acid

Table 1b ¹H NMR spectra of organotin derivatives of 4-fluorophenylacetic acid

^a Abbreviations: d = doublet; t = triplet; q = quartet; m = complex pattern; b = broad.


Spectroscopic characterization of compound 1A

The ¹H NMR data of compound **1A** are given in Table 1a. The expected resonances were assigned through their multiplicity and intensity patterns, as well as by the coupling constants characterizing

their multiplets and/or the tin satellites. The ¹³C NMR spectral data, displayed in Table 2a, combined with DEPT experiments, confirm the proposed structure (see Fig. 1). The aromatic carbon resonances were assigned by comparison of experimental chemical shifts with those calculated with increments from literature data.³ The unde-

Table 2a 13C NMR data of organotin derivatives of 2-fluorocinnamic acid²

Table 2b ¹³C NMR data of diorganotin derivatives of 4-fluorophenylacetic acid^a

 $^{^{}a}$ $^{n}J(^{13}C-Sn)$ = unresolved $^{119}Sn/^{117}Sn$ satellites. b Abbreviation: nv, non-visible.

^a "J(13C-Sn) = unresolved 119Sn/117Sn satellites. ^b Calculated chemical shifts with increments from literature data³

204 M. GIELEN *ET AL*.

Compound	¹¹⁹ Sn NMR (ppm)	¹⁹ F NMR (ppm)	Mössbauer parameters					
			QS (mm s ⁻¹)	IS (mm s ⁻¹)	Γ_1 (mm s ⁻¹)	Γ_2 (mm s ⁻¹)		
1A	-148.6	-114.3	3.51	1.44	0.96	0.99		
1B ² J(¹¹⁹ SnO ^{117/119} Sn)	-216.2, -206.8	-115.2	3.39	1.33	0.94	0.96		
2B ² J(¹¹⁹ SnO ^{117/119} Sn)	-209.1, -216.3 [113]	-115.1	3.39	1.30	0.87	0.88		
3B ${}^{2}J({}^{119}SnO^{117/119}Sn)$	-207.9, -215.8 [121]	-116.4	3.19	1.30	1.09	1.05		

3.18

1.31

-116.8

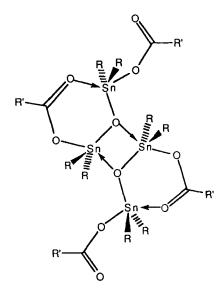
Table 3 119Sn and 19F NMR, and Mössbauer parameters, of compounds 1A, 1B, 2B, 3B and 4B

Abbreviations: QS, quadrupole splitting; IS, Isomer shift; Γ_1 , Γ_2 , linewidths.

-213.9, -209.5

[126]

 $^{2}J(^{119}SnO^{117/119}Sn)$


Figure 1 Structure proposed for compound 1A.

coupled (ddd, 11, 7 and 5 Hz) ¹⁹F NMR spectrum confirmed the multiplicities observed in the proton spectrum. The ¹¹⁹Sn NMR spectrum displays a singlet at -148.6 ppm in agreement with the chemical shifts of analogous compounds. ⁴⁻⁸ The hexacoordination of such compounds is also supported by the Mössbauer parameters (see Table 3).

Spectroscopic characterization of compounds 1B, 2B, 3B and 4B

The ¹H NMR data of compounds **1B-4B** are described in Tables 1a and 1b. They exhibit the expected resonance multiplicities (coupling with ¹H, ¹⁹F and/or ^{119/117}Sn satellites) and intensities. Two triplets are visible for the methyl groups, which confirms the di-n-butyltin and diethyltin moieties to be non-equivalent, in agreement with the dimeric structure of type **B** distannoxane compounds⁴⁻⁸ (see Fig. 2). The two quartets likewise observed for the methylene moieties confirm the ethyltin groups to be heterotopic.

The ¹³C NMR data of compounds **1B-4B**, displayed in Tables 2a and 2b, are likewise compatible with the proposed structure. Each of the three methylene groups of the n-butyl substituent, the signals of which are easily assigned by the value of the tin-carbon coupling constant,

1.00

1.03

Figure 2 Structure proposed for compounds 1B-4B.

Table 4 ID₅₀ values (ng cm⁻³) of compounds 1B and 3B, and of reference compounds, tested⁹ against two human tumour cell lines, MCF-7 and WiDr

	MCF-7		WiDr			
Compound	In DMSO	In EtOH	In DMSO	In EtOH		
1B	42	28	337	368		
3B	42	13	323	268		
Cisplatin ⁹	850		624			
Etoposide ⁹	187		624	_		
Doxorubicin9	63	_	31			
Mitomycin C ⁹	3	_	17			

					Selectivity analysis						
		Response parameters		ΔGI_{50}	ΔTGI	ΔLC_{50}	Response	Subpanel	$D_{\mathrm{GI}_{50}}$	D	
Nr.	NSC no.	log GI ₅₀	log TGI	log LC ₅₀	range	range	range	parameter	sensitivity	$D_{ ext{LC50}}$	$D_{ m H}$ MGD $_{ m H}$
1B	643 860	-6.11	-5.67	-5.15	1.30 1.91	1.36 2.18	1.25 2.40	GI ₅₀		45 (-6) 25 (-6) 30 (-5)	70 (-4) 62
3B	643 859	-6.93	-6.15	-5.68	1.07 2.30	1.59 3.74	1.67 3.35	TGI	Kidney	51 (-7) 57 (-6) 51 (-6)	63 (-7) 56

Table 5 NCI in vitro screening data review checklist for compounds 1B and 3B

also appear pairwise, as expected for dimeric distannoxanes. The ¹⁹F NMR spectral data are summarized in Table 3. All ¹⁹F resonances are broad so that the $J(^{19}F^{-1}H)$ coupling constants determined from the ¹H spectra could not be confirmed from the ¹⁹F NMR data. The ¹¹⁹Sn NMR spectra (Table 3) show two signals and tin satellites due to the tin–tin coupling between the two heterotopic tin atoms. The presence of the two heterotopic tin atoms is not evidenced by the Mössbauer spectra showing only one doublet with normal width. It is not unusual that Mössbauer spectra do not reveal such heterotopism. ⁴⁻⁸

In vitro antitumour activity of compounds 1B and 3B against MCF-7, a human mammary tumour, and WiDr, a human colon carcinoma

The results of the *in vitro* tests against two human tumour cell lines, MCF-7, a mammary tumour, and WiDr, a colon carcinoma, performed⁹ on compounds 1B and 3B, are given as ID₅₀ values in Table 4. Data on some compounds currently used clinically as antitumour agents are given for comparison.

The tested compounds exhibit slightly higher activities against WiDr, than cisplatin or etoposide. Their activity is comparable with that (200–300 ng cm⁻³) of the monofluorobenzoate analogue. Against MCF-7, they are even more active than doxorubicin; when dissolved initially in ethanol instead of DMSO, they score even better.

In vitro antitumour activity of compounds 1B and 3B against 60 human tumour cell lines

The screenings were performed at the National Cancer Institute (NCI) using the standard protocols developed there according to its new investigational in vitro, disease-oriented, primary anti-tumour screen.

The data were treated by the NCl protocols described elsewhere. In summary, $D_{\rm GI_{50}}$, $D_{\rm TGI}$ and $D_{\rm LC_{50}}$ are subpanel sensitivities calculated from the dose-response parameters GI_{50} , TGl and LC₅₀, which represent the interpolated concentrations at which the percentage growth (PG) is +50, 0 and -50, respectively. Computer simulations by the NCI suggest a value of $D_{\rm GI_{50}}$, $D_{\rm TGI}$ and $D_{\rm LC_{50}} \ge 50$ to represent a statistically significant antitumour differential sensitivity. In $D_{\rm H}$ and MGD_H are selectivity parameters evaluating cell-line subpanel selectivities of the antitumour activity of the compounds. NCl simulations suggest that values of $D_{\rm H}$ and MGD_H ≥ 75 represent statistically significant subpanel selectivities. In

According to these criteria, Table 5 shows that compound 1B is inactive. For compound 3B, only the sensitivity parameters $D_{\text{GI}_{50}}$, D_{TGI} and $D_{\text{LO}_{50}} \sim 50$ are satisfactory, but D_{H} and MGD_H below 75 reveal no significant subpanel selectivity.

EXPERIMENTAL

Instruments

The Mössbauer spectra were recorded as described previously. 12

The ¹H and ¹³C NMR spectra were recorded on a Bruker AM 270 instrument at 270.13 and 67.93 MHz respectively. The ¹¹⁹Sn NMR spectra were obtained on a Bruker WM 500 instrument at 186.5 MHz. The ¹⁹F NMR spectra were recorded on a Bruker AC250 instrument at 235.36 MHz.

Syntheses

Compounds of type A were typically prepared as follows: 1.00 g (4.0 mmol) di-n-butyltin oxide or 0.86 g (4.0 mmol) diethyltin oxide were added to

8.0 mmol of the appropriate organic acid dissolved in 150 cm³ of toluene and 50 cm³ of ethanol. The mixture was refluxed for 6 h and the ternary azeotrope water/ethanol/toluene was distilled off with a Dean-Stark funnel. Half of the remaining solution was evaporated under vacuum. The oily compound obtained was crystallized from ethanol.

The synthesis of compounds of type **B** occurs similarly but only half the amount of the organic acid is used, i.e. 4.0 mmol.

- 1A, R'COO = o-FC₆H₄CH = CHCOO, R = n-Bu: yield 92%, recrystallized from ethanol; m.p. 95-96 °C.
- 1B, R'COO = o-FC₆H₄CH = CHCOO, R = n-Bu: yield 94%, recrystallized from chloroform + ethanol; m.p. 88–90 °C.
- 2B, R'COO = o-FC₆H₄CH = CHCOO, R = Et: yield 97%, recrystallized from ethanol; m.p. 203–205 °C.
- **3B**, R'COO = o-FC₆H₄CH₂COO, R = n-Bu: yield 83%, recrystallized from chloroform + ethanol; m.p. 74-75 °C.
- **4B**, R'COO = o-FC₆H₄CH₂COO, R = Et: yield 78%, recrystallized from chloroform + ethanol; m.p. 103–104 °C.

In vitro tests against MCF-7 and WiDr

Drug activity was determined using an automated in vitro technique as described previously.9

In vitro tests against the NCI panel

The cell panel consists of 60 lines against which the compounds are tested at five concentrations differing by 10-fold dilutions from 10^{-4} to 10^{-8} mol dm⁻³. A 48-h continuous drug exposure protocol was used. A sulforhodamine B (SRB) protein assay allowed the estimation of cell viability or growth. ¹³ Protocols and activity parameters have been described elsewhere. ^{11, 13}

Acknowledgements We thank Dr B Mahieu and Mr A Verwee, respectively, for recording the Mössbauer and NMR

spectra. We are grateful to Dr D de Vos and Dr P Lelieveld, who performed the *in vitro* tests against MCF-7 and WiDr, and to the National Cancer Institute, Bethesda, MD, USA, who performed the other antitumour tests. The financial support from the Belgian Nationaal Fonds voor Wetenschappelijk Onderzoek (NFWO; grant number FKFO 20127.90) (MG), from the Nationale Loterij (grant number 9.0050.90) (RW, MB) from the "Ministère des Affaires Culturelles du Luxembourg" (grant number BFR90/036) (F.K.), from the "Comité National des Bourses OTAN" (F.K.) and from the "Ministère de l'Education Nationale du Luxembourg" (F.K.) are gratefully acknowledged.

REFERENCES

- Gielen, M, Willem, R, Biesemans, M, Bouâlam, M, El Khloufi, A and de Vos, D Appl. Organomet. Chem., 1992, 6: 287
- Gielen, M, Biesemans, M, El Khloufi, A, Meunier-Piret, J, Kayser, F and Willem, R J. Fluorine Chem., in press
- Kalinowski, H O, Berger, S and Braun, S Carbon NMR Spectroscopy, J Wiley, Chichester, 1988
- Gielen, M, El Khloufi, A, Biesemans, M, Mahieu, B and Willem, R Bull. Soc. Chim. Belg., 1992, 101: 243
- 5. Gielen, M, Meunier-Piret, J, Biesemans, M, Willem, R and El Khloufi, A Appl. Organomet. Chem., 1992, 6: 59
- Bouâlam, M, Willem, R, Biesemans, M and Gielen, M Appl. Organomet. Chem., 1991, 5: 497
- Boualam, M, Willem, R, Biesemans, M, Mahieu, B, Meunier-Piret, J and Gielen, M Main Group Met. Chem., 1991, 14: 41
- Meriem, A, Willem, R, Biesemans, M, Mahieu, B, de Vos, D, Lelieveld, P and Gielen, M Appl. Organomet. Chem., 1991, 5: 195
- van Lambalgen, R and Lelieveld, P Invest. New Drugs, 1987, 5: 161
- Gielen, M, El Khloufi, A, Biesemans, M and Willem, R Appl. Organomet. Chem., 1993, 7: 119
- 11. Gielen, M and Willem, R Anticancer Res., 1992, 12: 257
- Bouâlam, M, Willem, R, Biesemans, M, Mahieu, B, Meunier-Piret, J and Gielen, M Main Group Met. Chem., 1991, 14: 41
- Boyd, M R Status of the NCI preclinical antitumor drug discovery screen. In: Principles and Practices of Oncology, Vol 3, No 10, J B Lippincott Co, Philadelphia, PA, USA, 1080